Consider the variational inequalityVI(C,F)of finding a pointx*∈Csatisfying the property〈Fx*,x-x*〉≥0, for allx∈C, whereCis the intersection of finite level sets of convex functions defined on a real Hilbert spaceHandF:H→His anL-Lipschitzian andη-strongly monotone operator. Relaxed and self-adaptive iterative algorithms are devised for computing the unique solution ofVI(C,F). Since our algorithm avoids calculating the projectionPC(calculatingPCby computing several sequences of projections onto half-spaces containing the original domainC) directly and has no need to know any information of the constantsLandη, the implementation of our algorithm is very easy. To prove strong convergence of our algorithms, a new lemma is established, which can be used as a fundamental tool for solving some nonlinear problems.
Read full abstract