Abstract

The problem of model selection to compose a heterogeneous bagging ensemble was addressed in the paper. To solve the problem, three self-adapting genetic algorithms were proposed with different control parameters of mutation, crossover, and selection adjusted during the execution. The algorithms were applied to create heterogeneous ensembles comprising regression fuzzy models to aid in real estate appraisals. The results of experiments revealed that the self-adaptive algorithms converged faster than the classic genetic algorithms. The heterogeneous ensembles created by self-adapting methods showed a very good predictive accuracy when compared with the homogeneous ensembles obtained in earlier research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.