Wireless Sensor Networks (WSNs) have increasingly been used for remote monitoring tasks. Limited capabilities of sensor nodes in terms of communication, computation, and storage, present challenges to protocols designed for WSNs. Due to the severe energy constraint of sensor nodes, among the major concerns is the problem of designing efficient energy-aware routing protocols. Numerous routing protocols have been proposed in the literature. Cluster-based routing protocols for large-scale WSNs have some advantages as compared to a flat network topology. Clustering results in a reduced number of messages that propagate through the network in order to accomplish a sensing task. It also offers improved power control. Quality of Service (QoS) is becoming an important feature of data routing in WSNs. QoS is required for real-time data transmission when the result of a sensing task is dependent not only on the correct sensing of the environment but also on the timely delivery of the event notification to the monitoring center, the Sink. The emergency preparedness and response class of applications, for instance, impose delay requirements on the delivery of event notification messages. Transmitting video and imaging data poses certain bandwidth, delay, and jitter requirements on the routing protocols. Vehicular Ad Hoc Networks (VANETs) are envisioned to improve intervehicle coordination and become a part of intelligent transport systems with an ultimate goal of increasing safety on the roads and improving travel comfort. VANETs may include WSNs that are placed along the sides of roads and provide monitoring of road conditions. Routing protocols for VANETs also aim at satisfying end-to-end QoS requirements. This paper first discusses energy-efficient clustering routing protocols for WSNs, followed by approaches aimed at satisfying QoS in WSNs and VANETS. Lastly, a discussion and comparison of features of the selected routing protocols and QoS-based approaches is presented.
Read full abstract