The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance.
Read full abstract