Kink boundaries formed in Mg-based long period stacking order (LPSO) alloys play a key role in strengthening of these materials. As the kink structure grows, many high-angle kink boundaries are eventually formed which has inclination angle close to 34 degrees. We show that this peculiar structure is a result of irreversible structural transformation and is energetically stable. We also calculate segregation energies of alloying elements Y and Zn to this boundary. Finally, the critical resolved shear stress for the migration of kink boundary is estimated for a pure-Mg kink and that with saturated with segregation. We show that segregated kink boundary requires very high shear stress about 700 MPa for migration.
Read full abstract