Abstract

For optoelectronic devices from the near to the far infrared, the advantages of using ultrathin III-Sb layers as quantum wells or in superlattices are well known. However, these alloys suffer from severe surface segregation problems, so that the actual profiles are very different from the nominal ones. Here, by inserting AlAs markers within the structure, state-of-the-art transmission electron microscopy techniques were used to precisely monitor the incorporation/segregation of Sb in ultrathin GaAsSb films (from 1 to 20 monolayers (MLs)). Our rigorous analysis allows us to apply the most successful model for describing the segregation of III-Sb alloys (three-layer kinetic model) in an unprecedented way, limiting the number of parameters to be fitted. The simulation results show that the segregation energy is not constant throughout the growth (which is not considered in any segregation model) but has an exponential decay from 0.18 eV to converge asymptotically towards 0.05 eV. This explains why the Sb profiles follow a sigmoidal growth model curve with an initial lag in Sb incorporation of 5 MLs and would be consistent with a progressive change in surface reconstruction as the floating layer is enriched.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.