ABSTRACTBisphenol F based epoxy-acrylic latex with different amount of epoxy resin was successfully prepared by semi-continuous seeded emulsion polymerization. The resulting composite latexes had a narrow size distribution of about 105 nm in diameter. The DSC result showed that the epoxy resin and polyacrylate were grafting copolymerization. The FTIR spectra showed that the epoxy group had been introduced into the epoxy acrylic latex system, and the composite latex could be crosslinked with epoxy hardener at room temperature. The crosslinked composite latex film exhibited a high Tg compared to epoxy-acrylic latexes. The surface of the films with the epoxy resin was regular, and diffused into the polyacrylate phase in the epoxy-acrylic latexes films. Since the curing reactions occurred before latex particle coalescence stage, the surfaces of the cured epoxy-acrylate latex films had a number of interface particle. Compared with the acrylic latex, the thermal stability of the epoxy-acrylate latex was increased, and the stability of the cured film increased with increasing epoxy content.