Hypothesis: The geometric features of charged particles at a fluid–fluid interface substantially affect their interfacial configurations and interparticle interactions (electrostatic and capillary forces). Because lenticular particles exhibit both spherical and nonspherical surface characteristics, an investigation of their interfacial phenomena can provide in-depth understanding of the relationship between the configuration and the interactions of these particles at the interface.Experiments: Three types of lenticular particles are prepared using a seeded emulsion polymerization method. Pair interactions at the oil–water interface are directly measured with optical laser tweezers. The numerical calculation of the attachment energy of the particle to the interface is used to predict their configuration behaviors at the interface.Findings: The lenticular particles are found to adopt either an upright or inverted configuration that can be determined stochastically. When the interface contacts the truncated boundary or the biconvex boundary, the local interface deformation-induced capillary attraction likely becomes dominant. The contact probability can be estimated on the basis of the attachment energy profile and related to the relative strengths of capillary attraction and electrostatic repulsion between two particles at the interface. Furthermore, possible artifacts in measurements of the pair interactions between nonspherical particles with optical laser tweezers are discussed, depending on their interfacial configurations.