In WSN, DoS (denial of service) attack makes shortcoming system. The packets travel over and over in the sensor network. By that, all the assets like data transmission, memory, and vitality are squandered by this attack. However, the attacker ought to optimize its attacker plan for request to boost the impact on the system performance because of the deficiency of vitality at the aggressor side. Denial of service (DoS) attack on the Internet has become a squeezing issue. By staying away from these sorts of attacks, network performance can be improved. Therefore, security is a fundamental requirement for these networks. Effective routing is necessary in order to overcome the issued faced by the crosslayer in the DOS attack of the WSN network for the purpose of good transmission. This research work mainly focuses on performance evaluation using optimization methods. To establish the efficient path in the crosslayer against DoS attack, this paper has proposed enhanced lion optimization with an efficient path routing equalization technique (LOEPRE). If any failure node occurs in the network, then the node is recognized and the transfer of the data packet is done to the other node. Retransmission of data causes overload in the network. The proposed model focuses on these issues and overcomes these issues by improving the path efficiently with robust security. It consists of three phases: the initial phase includes the route discovery in the network. In the second phase, the transfer of data is done in the high router path for security purposes. Finally, the efficient path routing equalization technique is used for minimizing the overload in the network; it provides the equalized path length in the network and is highly efficient. Hence, the proposed LOEPRE technique is used to achieve energy efficiency in wireless network for prolonged network lifetime and minimum packet latency and minimize consumption of energy. Moreover, the simulation outcome of the proposed LOEPRE method is highly robust while comparing to the existing methods EFCRS, SSPRA ELOER, EFLOR, and TSTP. It achieves better performance than existing algorithms in comparing metric connectivity ratio, end-to-end delay, overhead, throughput, and packet delivery ratio.