The study was focused on the tectonic structure features of the Gulf of Aden, which includes three provinces. The western, central and eastern provinces differ in morphostructural segmentation of the spreading ridge of the Gulf of Aden, which took place in different geodynamic regimes of their formation and development. In our study, physical modeling was performed to investigate the segmentation mechanisms of the three parts and the formation of the marginal plateau and the island of Socotral. In experiments, an elastic-plastic plate lying on a liquid base (simulating melt) was subjected to normal or oblique stretchig. Plate sections imitating the continental or oceanic lithosphere in the model had different thicknesses. Various heterogeneities, such as cuts, linear weakened zones (rift heating zones) etc., were set in the plate sections in accordance with natural analogues. The modeling results show that morphostructural segmentation of the spreading axis in the Gulf of Aden depends on the degree of heating and the thickness of the lithosphere, associated with different distances from the Afar plume and local thermal anomalies, spreading obliquity and the existence of structural inhomogeneities with increased lithosphere strength, which are associated in this case with the presence of Mesozoic grabens on the pre-breakup basement. The smaller is the lithosphere thickness, the smaller is the size of the segments. The sharper is the angle, the more pronounced is segmentation. The study of the connection of the Gulf of Aden continental rift with the rift zone of the Carlsberg ridge suggests that during their development, these rift fractures propagated towards each other. The experiment results show that in case of a «sharp» boundary between blocks that differ in thickness, a shear zone is likely to occur. Such a case is applicable, for example, to the Alula-Fartak fracture zone, or to Owen’s fracture zone. With a less ‘sharp’ boundary, overlapping structures are often formed, such as microplates or microblocks enclosed between two rift fissures. In such case, one microblock then dies, while the other develops into a spreading ridge. Apparently, such a microblock is represented by the marginal plateau and the island of Sokotra. As shown by the modeling, propagation of the two rifts towards each other was important for the formation of the plateau and the island of Socotra. Moreover, a significant role was played by the initial geometry of the rift zones and their initial positioning separate from each other.
Read full abstract