The family of Mn-based organic-inorganic hybrids has greatly expanded due to their advantages in applications. They also show superior bright and size-tunable photoluminescence and can be considered a perfect alternative to toxic lead-based compounds. In this work, we present the detailed structural, optical, and electrical characterization of ([(NH3CH2CH2)3NH])2[MnBr5]Br5. The title compound exhibits a unique type of inorganic arrangement created by the trigonal bipyramids. It crystallizes in noncentrosymmetric space group R32, indicating its optical activity, piezoelectricity, and second-order optical nonlinearity proven by the second harmonic of light measurements. The studied crystals exhibit intense photoluminescence originating from the Mn(II) ion 4T1(G) → 6A1 transition. The measured lifetime of the photoluminescence emission is ≤1.5 ms, while the measured quantum yield for both powder and crystal samples reaches ∼70%.
Read full abstract