Previous studies [e.g. Baker & Hess, 1998. Vision Research, 38, 1211–1222] have shown that perceived direction in displays composed of multiple, limited-lifetime, Gabor micropatterns (G) is influenced by movement both at the fine spatial scale of the internal luminance modulation (first-order motion) and the coarse spatial scale of the Gaussian, contrast window (second-order motion). However it is presently indeterminate as to whether this pattern of results is indicative of the processes by which first-order and second-order motion signals interact within the visual system per se or those by which motion information, irrespective of how it is defined, is utilised across different spatial scales. To address this issue, and more generally the properties of the mechanisms that analyse motion in such displays, we employed stochastic motion sequences composed of either G, G added to a static carrier (G+C) or G multiplied with a carrier (G*C). Crucially G*C, unlike both G and G+C, micropatterns contain no net first-order motion and second-order motion only at the scale of the internal contrast modulation. For small displacements perceived direction in all cases showed a dependence on the internal sinusoidal spatial structure of the micropatterns and characteristic oscillations were typically observed, consistent with models in which first-order motion and second-order motion are encoded on the basis of similar low-level mechanisms. Importantly for larger displacements, and also when the internal spatial structure was randomised on successive exposures (so that motion at this spatial scale was unreliable), performance tended to be veridical for all types of micropattern, even though under these conditions displacements of the G*C micropatterns should have been invisible to current, low-level, motion-detecting schemes. This suggests that both low-level motion sensors and mechanisms utilising a different motion-detecting strategy such as high-level, attentive, feature-tracking may mediate perceptual judgements in stochastic displays.