Abstract

A previous study has suggested that second-order motion is ineffective at driving optokinetic nystagmus (OKN) when presented alone. First- and second-order motion cues interact in creating the perception of motion. Is there an interaction between first- and second-order cues in the control of eye movements? We presented combinations of first- and second-order cues moving in the same or opposite directions and measured the eye movements evoked, to look for a modification of the oculomotor response to first-order motion by simultaneously presented second-order cues. Dynamic random noise was used as a carrier for first- and second-order drifting gratings (13.4 degrees/s; 0.25 cycles/degree; 64 x 48 degrees screen viewed at 28.5 cm). Second-order gratings were defined by spatial modulation of the luminance flicker frequency of noise pixels of constant contrast (50%). A first-order, luminance-defined grating (13.4 degrees/s; 0.25 cycles/degree; variable contrast from 4-50%) was moved in either the same or the opposite direction. Eye movements were recorded by video-oculography from six subjects as they looked straight ahead. The gain (eye velocity/stimulus velocity) of first-order-evoked OKN increased with contrast. The presence of flicker-defined second-order motion in the opposite direction attenuated this OKN below a first-order contrast of 15%, although it had little effect at higher contrasts. When first- and second-order motion were in the same direction, there was an enhancement of the OKN response. We conclude that second-order motion can modify the optokinetic response to simultaneously presented first-order motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call