This paper focuses on the study of robust two-stage quadratic multiobjective optimization problems. We formulate new necessary and sufficient optimality conditions for a robust two-stage multiobjective optimization problem. The obtained optimality conditions are presented by means of linear matrix inequalities and thus they can be numerically validated by using a semidefinite programming problem. The proposed optimality conditions can be elaborated further as second-order conic expressions for robust two-stage quadratic multiobjective optimization problems with separable functions and ellipsoidal uncertainty sets. We also propose relaxation schemes for finding a (weak) efficient solution of the robust two-stage multiobjective problem by employing associated semidefinite programming or second-order cone programming relaxations. Moreover, numerical examples are given to demonstrate the solution variety of our flexible models and the numerical verifiability of the proposed schemes.
Read full abstract