We investigated the effect of external and internal osmotic stress on the profile of long-chain polyunsaturated fatty acids (LC-PUFA) in euryhaline eels Anguilla japonica. Freshwater (FW) fish were transferred to seawater (SW) for external osmotic stress or subjected to internal stress through injection with hypertonic saline. FW eels injected with isotonic saline served as controls. Plasma osmolality, Na+ concentration, and gill Na+/K+ -ATPase activity increased, but hematocrit decreased compared with controls in eels exposed to external or internal osmotic stress. The expression of two major transporter genes for SW adaptation, the Na+ -K+ -2Cl - co-transporter 1a (NKCC1a) in the gill and NKCC2b in the intestine, was up-regulated only in SW-transferred eels, suggesting a direct impact of SW on the gill and intestine via SW ingestion. Total LC-PUFA contents and DHA (22:6 n-3) increased in the gill and liver of SW-transferred eels and in the intestine of hypertonic saline-injected eels. However, total LC-PUFA content in plasma decreased after both external and internal osmotic stimuli. In contrast, the gene expression of two key enzymes involved in the LC-PUFA biosynthesis, Δ6 fatty acid desaturase and elongase, did not change in the gill, intestine and liver of osmotically stressed eels. These results indicate that LC-PUFA is possibly involved in osmoregulation and the increased LC-PUFA contents of osmoregulatory organs might be a result of LC-PUFA transport via circulation, rather than through de novo biosynthesis.
Read full abstract