Abstract
Smoltification and seawater adaptation of Atlantic salmon are associated with profound alterations in the endocrine status, osmoregulation and behaviour. Little is known about immunological changes during smoltification, although increased incidences of infectious diseases after seawater transfer (SWT) may indicate weakened protection. We report microarray gene expression analyses in farmed Atlantic salmon during smoltification stimulated with constant light and early seawater adaptation (one and three weeks after SWT). Gene expression changes were large, their magnitude in the head kidney and proximal intestine was greater than in the gill. Among 360 differentially expressed immune genes, 300 genes were down-regulated, and multiple functional groups were affected such as innate antiviral immunity, chemokines, cytokines and receptors, signal transducers, effectors of humoral and cellular innate immunity, antigen presentation and lymphocytes, especially T cells. No recovery was observed after three weeks in seawater. A notable exception was a transient up-regulation of immunoglobulin transcripts in the gill after SWT. Genes involved in stress responses and xenobiotic metabolism were up-regulated in respectively intestine and gill. The duration of this observed immune suppression and the possible consequences for susceptibility to infections and diseases need further exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.