AbstractMass loss of the Greenland Ice Sheet (GrIS) plays a major role in the global sea level rise. The west coast of the GrIS has contributed 1,000 Gt of the 4,488 Gt GrIS mass loss between 2002 and 2021, making it a hotspot for GrIS mass loss. Surface melting is driven by changes in the radiative budget at the surface, which are modulated by clouds. Previous works have shown the impact of North Atlantic transport for influencing cloudiness over the GrIS. Here we used space‐based lidar cloud profile observations to show that a polar low circulation promotes the presence of low clouds over the GrIS west coast that warm radiatively the GrIS surface during the melt season. Polar low circulation transports moisture and low clouds from the sea to the west of Greenland up over the GrIS west coast through the melt season. The concomitance of the increasing presence of low cloud in fall over the Baffin Sea due to seasonal sea‐ice retreat and a maximum occurrence of Polar low circulation in September results in a maximum of low cloud fraction (∼14% at 2.5 km above sea level) over the GrIS west coast in September. These low clouds warm radiatively the GrIS west coast surface up to 80 W/m2 locally. This warming contributes to an average increase of 10 W/m2 of cloud surface warming in September compared to July on the GrIS west coast. Overall, this study suggests that regional atmospheric processes independent from North Atlantic transport may also influence the GrIS melt.
Read full abstract