Due to the high cost of conventional coring operations, rotary sidewall coring has become increasingly important, particularly for deepwater operations. The rig costs, operational challenges, and amount of time involved to core wells below 30,000 ft are considerable, even for wireline operations. As wells get deeper, formation pressures will exceed 30,000 psi, and differential pressures can exceed 10,000 psi, which will eclipse the capabilities of traditional rotary coring tools. New technology has been introduced to enhance the recovery of rotary sidewall cores to improve operations and capabilities on these challenging wells that will be the primary subject of this paper. This new technology can also enhance coring operations and reliability for land and other offshore operations, in addition to deep water. New improvements and challenges include: * Reliable 1.5-in.-diameter core samples, with a 35,000-psi-rated tool * New high-powered coring tools with enhanced energy to address cutting Lower Tertiary wellcemented formations (Wilcox, Lower Miocene, etc.) * Higher torque and horsepower at the bit to enhance cutting and prevent stalling when coring * High-powered surface systems along with highstrength and high-power wireline cables * Upgrades to address high temperatures, highdifferential pressures, high-mud viscosity, large (24 in.) boreholes, and improved reliability * New drill bits and catcher rings to use a high-power system and operate in harsh coring environments * New cutting, retrieval, and core handling advancements for reliability in hard, consolidated formations * Combinability upgrades to reduce wireline trips and reduce rig costs for coring * Dual-coring tools with the ability to have different catcher rings and bits downhole simultaneously on a single run, along with tool redundancy downhole for improved reliability * Combination of rotary coring and formation sampling operations to obtain formation pressures, fluid samples, and rotary sidewall cores on a single run * Downhole monitoring of the coring operation, which includes drilling functions like torque, bit force, penetration rate, core bit penetration, and recovered core length, along with tool orientation * Core recovery information to enable 100% core verification downhole, so extra cores are not cut unnecessarily during the job, with individual core plugs measured and verified downhole * A unique method to seal the cores in a pressurecompensated coring tube downhole to capture all the formation fluids in the rock in downhole conditions * Complete rotary coring downhole operations can be monitored remotely for offsite interaction during the coring operation Besides reviewing historical coring tools and techniques, new technology is also discussed in more detail. The new technology starts with the introduction of the 1.5-in.-diameter rotary sidewall coring tools for deep water over a decade ago. Many applications and technologies are presented to show their effectiveness for deepwater operations. The successful examples include acquiring 1.5-in. cores in large boreholes, hard formations, deep wells, high-differential pressures, and extreme hydrostatic pressure. There are also examples of new technology available for future operations, including dual coring, combination coring, and sealed pressurized coring.