Abstract

In order to accurately obtain the gas content of in-situ coal seams in coal mines, a sealed coring technology for in-situ coal seams in coal mines has been proposed. By utilizing the pressure difference generated by high-pressure water at both ends of the piston, the piston is driven to cut off the positioning pin, which in turn drives the ball valve in the coring device to rotate, achieving the goal of cutting off and sealing the in-situ coal core. Performance tests were conducted on the sealing pressure of the coring device by opening the amount of water holes on the piston and using suspension pins of different materials, verifying the working parameters of the piston opening amount and suspension pins of different materials, providing basic data for subsequent industrial underground tests. Finally, during the industrial test underground, it was found that the gas content in the coal seam measured by closed sampling was 1.9-2.5 times higher than that of the coal seam sampled by the hole, which verified the successful design of the closed sampling device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.