Abstract. Satellite altimetry provides a unique technique for observing the sea surface height (SSH) signature of internal tides from space. Previous studies have constructed empirical internal tide models for the four largest constituents M2, S2, K1, and O1 by satellite altimetry. Yet no empirical models have been constructed for minor tidal constituents. In this study, we observe mode-1 N2 internal tides (the fifth largest constituent) using about 100 satellite years of SSH data from 1993 to 2019. We employ a recently developed mapping procedure that includes two rounds of plane wave analysis and a two-dimensional bandpass filter in between. The results show that mode-1 N2 internal tides have millimeter-scale SSH amplitudes. Model errors are estimated from background internal tides that are mapped using the same altimetry data but with a tidal period of 12.6074 h (N2 minus 3 min). The global mean error variance is about 25 % that of N2, suggesting that the mode-1 N2 internal tides can overcome model errors in some regions. We find that the N2 and M2 internal tides have similar spatial patterns and that the N2 amplitudes are about 20 % of the M2 amplitudes. Both features are determined by the N2 and M2 barotropic tides. The mode-1 N2 internal tides are observed to propagate hundreds to thousands of kilometers in the open ocean. The globally integrated N2 and M2 internal tide energies are 1.8 and 30.9 PJ, respectively. Their ratio of 5.8 % is larger than the theoretical value of 4 % because the N2 internal tides contain relatively larger model errors. Our mode-1 N2 internal tide model is evaluated using independent satellite altimetry data in 2020 and 2021. The results suggest that the model can make internal tide correction in regions where the model variance is greater than twice the error variance. This work demonstrates that minor internal tidal constituents can be observed using multiyear multi-satellite altimetry data and dedicated mapping techniques.
Read full abstract