The beginning of industrialization human being has observed a variety of environmental concerns on the earth. The industrialization has not simply carried growth and affluence but finally troubled the environment. One of the crashes is noticeable, in form of water pollution. Now the present study of heavy metal pollution of water body has been talk over. Effluents from an unlimited amount of industries viz., textile, tannery, dyes, pigment, paint, wood processing, electroplating, leather, petroleum refining etc., have a key amount of heavy metal in their wastewater. The conventional technique of treatment heavy metal contamination contains chemical precipitation, membrane separation, chemical oxidation, ion exchange, electro dialysis, reverse osmosis, etc. These procedures are costly, energy intensive and often linked with creation of toxic by-product. Hence, the adsorption has been experimental as a cost-efficient method for treatment of heavy metals removal from wastewater. In the existing study numerous inexpensive adsorbent has been an analysis as a reduction of heavy metal effluence from wastewater. These adsorbent include resources of natural origin similar to zeolites, peat moss, peat moss, chitin, clay are find to be a real agent for elimination of lethal heavy metal like Cu, Ni, Hg, Zn, Cr , Pb, Cd, etc. Distinctly from these, a range of farming wastes like waste tea, rice husk, black gram neem bark, walnut shell, etc. Also known to be an influential adsorbent for the eliminating heavy metal from wastewater. at the side of that inexpensive or low-cost manufacturing byproduct like lignin, fly ash, iron (III) red mud, hydroxide and coffee husks, tea factory waste, Areca waste, sugar beet battery industry waste, pulp, waste slurry, blast furnace sludge, grape stalk wastes, sea nodule residues have been found for their methodological option for removal toxic metal from waste water.