The sea cucumber Apostichopus japonicus can expel internal organs under stress and regenerate them subsequently. However, growth is delayed during regeneration, significantly impacting the industry. Circular RNAs (circRNAs) are single-stranded circular RNA molecules produced through alternative splicing of mRNA precursors. They play crucial roles in regulating gene expression via the ceRNA mechanism. In this study, circRNA profiles of control and regenerated intestines were constructed. A total of 15,874 circRNAs were identified, with a length of 300‐350 nucleotides (nt) being the most abundant. Sanger sequencing confirmed the circular structure of circRNA398. Compared with the normal intestine, 50 and 83 differentially expressed circRNAs (DE-circRNAs) were identified in the regenerated intestine at 1 and 3 days post evisceration (dpe), respectively. Gene ontology (GO) terms for signal transduction and development regulation were most significantly enriched in 1dpeVScon and 3dpeVScon treatments, respectively. The dual-luciferase assay revealed that circRNA8388 functions as a sponge for miR-2392, participating in the remodeling of the extracellular matrix (ECM). In conclusion, these findings will contribute to the enhancement of the non-coding RNA database for echinoderms and lay the groundwork for future investigations into circRNA regulation during intestinal regeneration.