Abstract

Fibrillin is an important structural protein in connective tissues. The presence of fibrillin in sea cucumber Apostichopus japonicus is still poorly understood, which limits our understanding of the role of fibrillin in the A. japonicus microstructure. The aim of this study was to clarify the presence of fibrillin in the sea cucumber A. japonicus body wall. Herein, the presence of fibrillin in sea cucumber A. japonicus was investigated by utilizing targeted proteomics and visualization strategies. The contents of three different isoforms of fibrillin with high abundance in A. japonicus were determined to be 0.96, 2.54, and 0.15 μg/g (wet base), respectively. The amino acid sequence of fibrillin (GeneBank number: PIK56741.1) that started at position 631 and ended at position 921 was selected for cloning and expressing antigen. An anti-A. japonicus fibrillin antibody with a titer greater than 1:64 000 was successfully obtained. It was observed that the distribution of fibrillin in the A. japonicus body wall was scattered and dispersed in the form of fibril bundles at the microscale. It further observed that fibrillin was present near collagen fibrils and some entangled outside the collagen fibrils at the nanoscale. Moreover, the stoichiometry of the most dominant collagen and fibrillin molecules in A. japonicus was determined to be approximately 250:1. These results contribute to an understanding of the role of fibrillin in the sea cucumber microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.