BackgroundThis paper explores the spatial distribution of sampling within the active surveillance of sheep scrapie in Great Britain. We investigated the geographic distribution of the birth holdings of sheep sampled for scrapie during 2002 – 2005, including samples taken in abattoir surveys (c. 83,100) and from sheep that died in the field ("fallen stock", c. 14,600). We mapped the birth holdings by county and calculated the sampling rate, defined as the proportion of the holdings in each county sampled by the surveys. The Moran index was used to estimate the global spatial autocorrelation across Great Britain. The contributions of each county to the global Moran index were analysed by a local indicator of spatial autocorrelation (LISA).ResultsThe sampling rate differed among counties in both surveys, which affected the distribution of detected cases of scrapie. Within each survey, the county sampling rates in different years were positively correlated during 2002–2005, with the abattoir survey being more strongly autocorrelated through time than the fallen stock survey. In the abattoir survey, spatial indices indicated that sampling rates in neighbouring counties tended to be similar, with few significant contrasts. Sampling rates were strongly correlated with sheep density, being highest in Wales, Southwest England and Northern England. This relationship with sheep density accounted for over 80% of the variation in sampling rate among counties. In the fallen stock survey, sampling rates in neighbouring counties tended to be different, with more statistically significant contrasts. The fallen stock survey also included a larger proportion of holdings providing many samples.ConclusionSampling will continue to be uneven unless action is taken to make it more uniform, if more uniform sampling becomes a target. Alternatively, analyses of scrapie occurrence in these datasets can take account of the distribution of sampling. Combining the surveys only partially reduces uneven sampling. Adjusting the distribution of sampling between abattoirs to reduce the bias in favour of regions with high sheep densities could probably achieve more even sampling. However, any adjustment of sampling should take account of the current understanding of the distribution of scrapie cases, which will be improved by further analysis of this dataset.
Read full abstract