Abstract

After the decline of the Bovine Spongiform Encephalopathy (BSE) epidemic in Great Britain (GB), scrapie remains the most prevalent animal Transmissible Spongiform Encephalopathy (TSE) present in GB. A number of control measures have been implemented for classical scrapie, and since 2005 there has been a large reduction in the number of observed cases. The objective of this study is to estimate two measures of disease frequency using up to date surveillance data collected during and after the implementation of different control measures established since 2004, and breeding for resistance schemes that ran from 2001 until 2009. This would enable an assessment of the effectiveness of both the breeding for resistance programme and the compulsory eradication measures in reducing the prevalence of scrapie in GB. Evaluation of the sensitivity of the rapid post-mortem test for scrapie indicated that it detected scrapie in the last 25% of the incubation period. A back-calculation model was developed to estimate the prevalence of infection at animal and flock-level. The results of the model indicated a mean drop of infection prevalence of 31% each year, leading to a 90% drop in infection prevalence between 2005, with an estimate of 5737 infected sheep in GB in 2012.The risks of classical scrapie infection in animals with genotypes of National Scrapie Plan Types I–IV (all other genotypes), relative to Type V (all genotypes containing V136 R154 Q171 and not A136 R154 R171), were estimated to be: 0, 0.0008, 0.07, and 0.21 respectively. The model estimated a very low rate of reporting of clinical suspects and a large decline from 2007 of the probability of a sheep being reported as a clinical suspect. The model also estimated that the expected number of sheep holdings with classical scrapie in 2012 was 215 (95% confidence interval: 33–437), out of a total of approximately 72,000 sheep holdings in GB. Model estimates indicate that the prevalence in 2012 has dropped to 10% of that in 2005, showing the effectiveness of the control measures. It also shows a bias in the destination of infected animals, with the majority of infected animals being detected in the fallen stock surveillance stream, and an extremely low proportion of animals detected as clinical suspects; this is very important in terms of the design of surveillance schemes for classical scrapie.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call