Industrial Computed Tomography (CT) technology is increasingly applied in fields such as additive manufacturing and non-destructive testing, providing rich three-dimensional information for various fields, which is crucial for internal structure detection, defect detection, and product development. In subsequent processes such as analysis, simulation, and editing, three-dimensional volume data models often need to be converted into mesh models, making effective meshing of volume data essential for expanding the application scenarios and scope of industrial CT. However, the existing Marching Cubes algorithm has issues with low efficiency and poor mesh quality during the volume data meshing process. To overcome these limitations, this study proposes an innovative method for industrial CT volume data meshing based on the Iterative Smooth Signed Surface Distance (iSSD) algorithm. This method first refines the segmented voxel model, accurately extracts boundary voxels, and constructs a high-quality point cloud model. By randomly initializing the normals of the point cloud and iteratively updating the point cloud normals, the mesh is reconstructed using the SSD algorithm after each iteration update, ultimately achieving high-quality, watertight, and smooth mesh model reconstruction, ensuring the accuracy and reliability of the reconstructed mesh. Qualitative and quantitative analyses with other methods have further highlighted the excellent performance of the method proposed in this paper. This study not only improves the efficiency and quality of volume data meshing but also provides a solid foundation for subsequent three-dimensional analysis, simulation, and editing, and has important industrial application prospects and academic value.
Read full abstract