AbstractThis issue's Editor's Choice [1] is a brief review on promises and advantages of crystalline oxides on semiconductors, especially the role of interfaces, for semiconductor technology.The cover picture shows at the top a Z‐contrast image of the Si:SrSi2:SrO interface, where on the left side the positions of the atoms are highlighted, and on the right side a theoretical simulation of the image is overlayed, using the theoretical equilibrium geometry of the interface as obtained from first principles (bottom, green: Si, blue: O, orange: Sr). Purple isosurfaces show the electron density of the Si–O bonding state, and the arrows give the direction of the microscopic dipoles at the interface.The first author Marco Buongiorno Nardelli is Professor at the Department of Physics of North Carolina State University, where he heads a research group focusing on the application of ab‐initio electronic structure calculation techniques for the study of important aspects of the physics of materials (ERMES).This paper is a presentation from the 5th Motorola Workshop on Computational Materials and Electronics (MWCME 2003), held in Austin, Texas, 13–14 November 2003. The proceedings were guest‐edited, for the fourth time in this journal, by Alex Demkov (now Freescale Semiconductor).This issue of physica status solidi (b) also contains Original Papers presented at the XI Latin American Congress of Surface Science and Its Applications (XI CLACSA), Pucón, Chile, 7–12 December 2003. The Proceedings of this conference are to be continued in phys. stat. sol. (a) 201, No. 10 (2004) and in an online issue of phys. stat. sol. (c) 1, No. S1 (2004). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)