We clarify the role of carbon and dysprosium in nickel-dysprosium-silicide (Ni[Dy]Si:C) contacts formed on silicon:carbon (Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-</sub> yCy or Si:C) for Schottky-barrier height (SBH) reduction. Carbon-induced energy bandgap Eg narrowing and the segregation of dysprosium (Dy) at the Ni[Dy]Si:C/Si:C interface were shown to be responsible for SBH reduction in this paper. First, we show that electron barrier height (PhiBN) reduction of up to 69 meV (or 10.3%) for NiSi can be achieved with the scaling of substitutional carbon C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">sub</sub> concentration from 0% to 1.0%. Second, new evidence revealing the segregation of Dy-based interlayer at the Ni[Dy]Si:C/Si:C interface and an additional 321 meV (or 53%) reduction in PhiBN for NiSi:C are presented. This could be due to charge transfer at the Ni[Dy]Si:C/Si:C interface. The successful modulation of PhiBN for Ni[Dy]S:C translates to an effective 41% reduction in device R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">EXT</sub> , resulting in improved drive current performance. This opens new avenues to optimize the Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-y</sub> C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y</sub> contact interface for extending transistor performance in future technological generations.
Read full abstract