Abstract

We report the first integration of selenium (Se) segregation contact technology in ultrathin-body (UTB) n-MOSFET featuring Ni fully silicided source and drain. During the Ni silicidation process, the implanted Se segregated at the NiSi-n-Si interface, leading to significant reduction of Schottky barrier height and contact resistance. The UTB n-MOSFETs integrated with Se segregation (SeS) contact technology show significant external series resistance reduction and drive current performance enhancement. Drain-induced barrier lowering and gate leakage current density are not adversely affected by the SeS process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.