Abstract

We explore a novel integration approach that introduces valence-mending adsorbates such as sulfur (S) or selenium (Se) by ion implantation and prior to nickel silicidation for the effective reduction of contact resistance and Schottky barrier (SB) height at the NiSi/n-Si interface. While a low SB height of ~0.12 eV can be obtained for NiSi formed on S-implanted n-Si, the insertion of a 1000degC anneal prior to silicidation leads to S out-diffusion and loss of SB modulation effects. We demonstrate that Se-implanted Si does not suffer from Se outdiffusion even after a 1000degC anneal, and subsequent Ni silicidation formed an excellent ohmic contact with a low SB height of 0.13 eV. Se segregation at the NiSi/n-Si (100) interface occurred. Implantation of Se and its segregation at the NiSi/n-Si interface is a simple and promising approach for achieving reduced SB height and contact resistance in future high-performance n-channel field-effect transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.