BackgroundTreatment-resistant schizophrenia (TRS) affects a substantial proportion of patients who do not respond adequately to antipsychotic medications, yet the underlying biological mechanism remains poorly understood. This study investigates the link between the genetic predisposition to schizophrenia and TRS. Methods857 individuals diagnosed with schizophrenia were divided into TRS (n = 142) and non-TRS (n = 715) based on well-defined TRS criteria. Polygenic risk scores (PRS) were calculated using schizophrenia genome-wide association summary statistics from East-Asian and European ancestry populations. PRS was estimated using both P-value thresholding and Bayesian framework methods. Logistic regression analyses were performed to differentiate between TRS and non-TRS individuals. ResultsThe schizophrenia PRS derived from the East-Asian training dataset effectively distinguished between TRS and non-TRS individuals (R2 = 0.029, p = 4.86 ×10-5, pT = 0.1, OR = 1.52, 95% CI = 1.242–1.861), with higher PRS values observed in the TRS group. Similar PRS analysis was conducted based on the European ancestry GWAS summary statistics, but we found superior prediction based on the East-Asian ancestry discovery data. ConclusionThis study reveals an association between common risk variants for schizophrenia and TRS status, suggesting that the genetic burden of schizophrenia may partly contribute to treatment resistance in individuals with schizophrenia. These findings propose the potential use of genetic risk factors for early TRS identification and timely access to clozapine. However, the ancestral background of the discovery sample is crucial for successfully implementing PRS in clinical settings.
Read full abstract