Abstract

Cognitive impairment is a hallmark of schizophrenia, but no effective treatment is available to date. The underlying pathophysiology includes disconnectivity between hippocampal and prefrontal brain regions. Supporting evidence comes from diffusion-weighted imaging studies that suggest abnormal organization of frontotemporal white matter pathways in schizophrenia. Here, we hypothesize that in schizophrenia, deficient maturation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes substantially contributes to abnormal frontotemporal macro- and micro-connectivity and subsequent cognitive deficits. Our postmortem studies indicate a reduced oligodendrocyte number in the cornu ammonis 4 (CA4) subregion of the hippocampus, and others have reported the same histopathological finding in the dorsolateral prefrontal cortex. Our series of studies on aerobic exercise training showed a volume increase in the hippocampus, specifically in the CA4 region, and improved cognition in individuals with schizophrenia. The cognitive effects were subsequently confirmed by meta-analyses. Cell-specific schizophrenia polygenic risk scores showed that exercise-induced CA4 volume increase significantly correlates with OPCs. From animal models, it is evident that early life stress and oligodendrocyte-related gene variants lead to schizophrenia-related behavior, cognitive deficits, impaired oligodendrocyte maturation, and reduced myelin thickness. Based on these findings, we propose that pro-myelinating drugs (e.g., the histamine blocker clemastine) combined with aerobic exercise training may foster the regeneration of myelin plasticity as a basis for restoring frontotemporal connectivity and cognition in schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.