Considering the advantages of 3D printing, intelligent factories and distributed manufacturing, the 3D printing distributed intelligent factory has begun to rise in recent years. However, because the supply chain network of this kind of factory is very complex, coupled with the impact of customized scheduling and environmental constraints on the enterprise, the 3D printing distributed intelligent factory is facing the great challenge of realizing green supply chain networks and optimizing production scheduling at the same time, and thus a theoretical gap appears. This paper studies the hybrid optimization of green supply chain networks and scheduling of the distributed 3D printing intelligent factory. Firstly, according to the green supply chain network architecture of the distributed 3D printing intelligent factory, the cost minimization model is constructed. Secondly, mathematical software is used to solve the model, and the scheduling plan can be worked out. Finally, through the simulation analysis, it is concluded that the influencing factors such as demand, factory size and production capacity complicate the production distribution, and it can be observed that the carbon emission cost has gradually become the main factor affecting the total cost. The study has a reference value for the management decision making of the distributed 3D printing intelligent factory under the background of carbon emissions.