One of the technological hurdles in the widespread application of additive manufacturing is the formation of undesired microstructure and defects, e.g., the formation of columnar grains in Ti-6Al-4V—the columnar microstructure results in anisotropic mechanical properties, a reduction in ductility, and a decrease in the endurance limit. Here, we present the potential implementation of a hexagonal array of synchronized lasers to alter the microstructure of Ti–6Al–4V toward the formation of preferable equiaxed grains. An anisotropic heat transfer model is employed to obtain the temporal/spatial temperature distributions and construct the solidification map for various process parameters, i.e., laser power, scanning speed, and the internal distance among lasers in the array. Approximately 55% of the volume fraction of equiaxed grains is obtained using a laser power of P = 500 W and a scanning speed of v = 100 mm/s. The volume fraction of the equiaxed grains decreases with increasing scanning velocity; it drops to 38% for v = 1000 mm/s. This reduction is attributed to the decrease in absorbed heat and thermal crosstalk among lasers, i.e., the absorbed heat is higher at low scanning speeds, promoting thermal crosstalk between melt pools and subsequently forming a large volume fraction of equiaxed grains. Additionally, a degree of overlap between lasers in the array is required for high scanning speeds (v = 1000 mm/s) to form a coherent melt pool, although this is unnecessary for low scanning speeds (v = 100 mm/s).
Read full abstract