Abstract

Investigating the optimal laser processing parameters for industrial purposes can be time-consuming. Moreover, an exact analytic model for this purpose has not yet been developed due to the complex mechanisms of laser processing. The main goal of this study was the development of a backpropagation neural network (BPNN) with a grey wolf optimization (GWO) algorithm for the quick and accurate prediction of multi-input laser etching parameters (energy, scanning velocity, and number of exposures) and multioutput surface characteristics (depth and width), as well as to assist engineers by reducing the time and energy require for the optimization process. The Keras application programming interface (API) Python library was used to develop a GWO-BPNN model for predictions of laser etching parameters. The experimental data were obtained by adopting a 30 W laser source. The GWO-BPNN model was trained and validated on experimental data including the laser processing parameters and the etching characterization results. The R2 score, mean absolute error (MAE), and mean squared error (MSE) were examined to evaluate the prediction precision of the model. The results showed that the GWO-BPNN model exhibited excellent accuracy in predicting all properties, with an R2 value higher than 0.90.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.