NO2 vertical column densities (VCDs) over East Asia in June and December 2007 were simulated by the Community Multi-scale Air Quality (CMAQ) version 4.7.1 using an updated and more elaborate version of the Regional Emission Inventory in Asia (REAS) version 2. The modeling system could reasonably capture observed spatiotemporal changes of NO2 VCDs by satellite sensors, the Global Ozone Monitoring Experiment-2 (GOME-2), the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), and the Ozone Monitoring Instrument (OMI), even at the coarsest horizontal resolution of 80 km. The CMAQ simulations were performed in a sequence of three horizontal resolutions (80 km, 40 km, and 20 km) for June and December 2007 to investigate the influence of changes of horizontal resolution on the obtained NO2 VCDs. CMAQ-simulated NO2 VCDs generally increased with improvements in resolution from 80 km to 40 km and then to 20 km. Increases in the CMAQ-simulated NO2 VCDs were greater for the change from 80 km to 40 km than for those from 40 km and 20 km, in which the increases of NO2 VCDs due to the improvement of horizontal resolution were approached convergence at the horizontal resolution of approximately 20 km. Conversely, no clear convergences in NO2 VCDs changes were found at near Tokyo and over the East China Sea. The biases of the NO2 VCDs simulated at a resolution of 20 km against the satellite retrievals were ∼36% near Beijing (CHN1) and ∼78% near Shanghai (CHN2) in summer; these errors were found to be comparable to the horizontal resolution-dependent errors, which were 18–25% at CHN1 and 44–58% at CHN2 from 80 km to 40 km. Conversely, the influence of changes of horizontal resolution in winter was relatively less compared to that in summer.Implications: NO2 VCDs over East Asia in June and December 2007 were simulated using CMAQ version 4.7.1 and REAS version 2. The modeling system could reasonably capture observed spatiotemporal changes of NO2 VCDs by satellite sensors. The CMAQ simulations were performed in a sequence of three horizontal resolutions, 80, 40, and 20 km, to investigate the influence of changes of horizontal resolution on the obtained NO2 VCDs. The results suggested that the influence of changes of horizontal resolution was larger in summer compared to that in winter. The magnitude of the influence was comparable to the biases of the NO2 VCDs simulated at a resolution of 20 km against the satellite retrievals.
Read full abstract