Abstract

This paper presents a comparison of CO2 products derived from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS), with reference to calibration data obtained using the high-resolution ground-based Fourier Transform Spectrometers (g-b FTS) in the Total Carbon Column Observing Network (TCCON). Based on the monthly averages, we calculate the global offsets and regional relative precisions between satellite products and g-b FTS measurements. The results are as follows: the monthly means of SCIAMACHY data are systemically slightly lower than g-b FTS, but limited in coverage; the GOSAT data are superior in stability, but inferior in systematic error; the mean difference between AIRS data and that of g-b FTS is small; and the monthly global coverage is above 95%. Therefore, the AIRS data are better than the other two satellite products in both coverage and accuracy. We also estimate linear trends based on monthly mean data and find that the differences between the satellite products and the g-b FTS data range from 0.25 ppm (SCIAMACHY) to 1.26 ppm (AIRS). The latitudinal distributions of the zonal means of the three satellite products show similar spatial features. The seasonal cycle of satellite products also illustrates the same trend with g-b FTS observations.

Highlights

  • Total atmospheric carbon dioxide (CO2) has increased from approximately 280 to 379 ppm over the past century, due to the burning of fossil fuels for expanding industrial activities [1]

  • Where n is the number of pairs of satellite product data and corresponding ground-based Fourier Transform Spectrometers (g-b Fourier Transform Spectrometer (FTS)) data

  • The XCO2 results for each satellite product are listed in Table 3 for each site, showing the mean differences (d) to g-b FTS, the standard deviations of the differences (s) and the correlation coefficients (r) for the analyzed time period and the two subperiods

Read more

Summary

Introduction

Total atmospheric carbon dioxide (CO2) has increased from approximately 280 to 379 ppm over the past century, due to the burning of fossil fuels for expanding industrial activities [1]. CO2 absorbs infrared radiation emitted from the earth’s surface, so an increase in CO2 concentration leads to a rise in atmospheric temperatures. CO2 and other greenhouse gases influence tropospheric ozone and water vapor, further increasing their importance to the Earth’s radiative budget. Tropical land ecosystems contributed most of the interannual changes in Earth’s carbon balance through the 1980s, whereas northern mid- and high-latitude terrestrial ecosystems dominated from 1990 to 1995 [3]. Research on the greenhouse effect and carbon monitoring require high precision and the long-term measurement of the atmospheric CO2 concentration. Space-based remote sensing of the CO2 column-average dry air mole fractions (XCO2) has the potential to provide observed global constraints on CO2 fluxes across the surface-atmosphere boundary and to provide insight into the related biogeochemical cycles [5]. Satellite observations of CO2 offer new insights into the magnitude of regional sources and sinks and can help overcome the large uncertainties associated with the upscaling and interpretation of data on CO2 concentration from the Earth’s surface [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call