Recent researches have highlighted the significance of nonlocal processes in understanding the morphodynamics and sediment transport across landscapes. Nonlocal processes in sediment transport refer to the influence of landscape properties beyond the immediate vicinity of a given point on the sediment flux. Existing nonlocal models, employing fractional operators, aim to capture global correlated nonlocality using a global convolution operator. Nevertheless, such models tend to disregard nonlocal phenomena occurring at regional scales, potentially resulting in substantial inaccuracies due to an inadequate representation of sediment transport processes at these scales. This study presents a novel and more comprehensive mathematical formulation of the nonlocal Exner law, leveraging the peridynamic differential operator (PDDO). The proposed regional nonlocal model incorporates nonlocal sediment transport processes by utilizing a pre-defined weight function and interaction domain within the framework of the PDDO. The novel regional nonlocal model effectively bridges the gap between local and global models by integrating both short-range and long-range interactions in sediment transport. Application reveals that the regional nonlocal model provides a significantly enhanced accuracy in depicting profiles at the bedform scale compared to the local and the global models.
Read full abstract