Current state-of-the-art medical image segmentation methods prioritize precision but often at the expense of increased computational demands and larger model sizes. Applying these large-scale models to the relatively limited scale of medical image datasets tends to induce redundant computation, complicating the process without the necessary benefits. These approaches increase complexity and pose challenges for integrating and deploying lightweight models on edge devices. For instance, recent transformer-based models have excelled in 2D and 3D medical image segmentation due to their extensive receptive fields and high parameter count. However, their effectiveness comes with the risk of overfitting when applied to small datasets. It often neglects the vital inductive biases of Convolutional Neural Networks (CNNs), essential for local feature representation. In this work, we propose PMFSNet, a novel medical imaging segmentation model that effectively balances global and local feature processing while avoiding the computational redundancy typical of larger models. PMFSNet streamlines the UNet-based hierarchical structure and simplifies the self-attention mechanism's computational complexity, making it suitable for lightweight applications. It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies. The extensive comprehensive results demonstrate that our method achieves superior performance in various segmentation tasks on different data scales even with fewer than a million parameters. Results reveal that our PMFSNet achieves IoU of 84.68%, 82.02%, 78.82%, and 76.48% on public datasets of 3D CBCT Tooth, ovarian tumors ultrasound (MMOTU), skin lesions dermoscopy (ISIC 2018), and gastrointestinal polyp (Kvasir SEG), and yields DSC of 78.29%, 77.45%, and 78.04% on three retinal vessel segmentation datasets, DRIVE, STARE, and CHASE-DB1, respectively. Our proposed model exhibits competitive performance across various datasets, accomplishing this with significantly fewer model parameters and inference time, demonstrating its value in model integration and deployment. It strikes an optimal compromise between efficiency and performance and can be a highly efficient solution for medical image analysis in resource-constrained clinical environments. The source code is available at https://github.com/yykzjh/PMFSNet.
Read full abstract