The structure of network has a significant impact on the stability of the network. It is useful to reveal the effect of fractal structure on the vulnerability of complex network since it is a ubiquitous feature in many real-world networks. There have been many studies on the stability of the small world and scale-free models, but little has been down on the quantitative research on fractal models. In this paper, the vulnerability was studied from two perspectives: the connection pattern between hubs and the fractal dimensions of the networks. First, statistics expression of inter-connections between any two hubs was defined and used to represent the connection pattern of the whole network. Our experimental results show that statistic values of inter-connections were obvious differences for each kind of complex model, and the more inter-connections, the more stable the network was. Secondly, the fractal dimension was considered to be a key factor related to vulnerability. Here we found the quantitative power function relationship between vulnerability and fractal dimension and gave the explicit mathematical formula. The results are helpful to build stable artificial network models through the analysis and comparison of the real brain network.
Read full abstract