We report on the application of a simple propagation-based phase-space tomographic technique to the determination of characteristic projections through the mutual optical intensity and the generalized radiance of a scalar, quasi-monochromatic partially coherent wave field. This method is applied to the reconstruction of the coherence functions of an initially spatially coherent optical wave field that has propagated through a suspension of polystyrene microspheres. As anticipated, we see that the field separates into a ballistic, or unscattered, component and a scattered component with a much shorter coherence length. Good agreement is obtained between experimental results and the results of a model based on a wave-transport equation.