Poly (lactic-co-glycolic acid) (PLGA) has been widely used as drug delivery carrier or scaffold for bone repair due to its good biocompatibility, biodegradability, and degradation rate controllability. However, defects, like acidic degradation by-products, are associated with PLGA and restrict its practical applications. Jade powder, leftover from jade polishing process, is a natural material rich in elements of Ca, Si, and Mg while biocompatible and antibacterial. Herein, jade powder/PLGA composite microspheres with different mass ratios were prepared by emulsion solvent evaporation method under the optimized conditions. Characterization from SEM, EDS, FTIR, and surface water contact angle measurements indicated jade powder was successfully combined with PLGA and improved the surface wettability of the microspheres. Moreover, it was proved, through in vitro simulated body fluid test as well as adipose stem cell osteogenesis analysis, that jade powder addition enhanced the pH buffering capacity of the composite microsphere for simulated body fluid, and promoted the in vitro osteogenic activity of adipose stem cells at a certain amount. This study provides new ideas to employ jade powder, a natural material otherwise thrown away as solid waste, for improvement on PLGA performance in bone repair or potentially other biomedical fields.
Read full abstract