Abstract

In the modern environment conscious era, there has been a huge demand for the effective green method to fabricate biomaterials for sustained transdermal release of diltiazem hydrochloride to treat hypertension and cardiac failure. In this vein, the present study explores the amination of waste jute sourced nanocellulose (ANC) and its effect as a reinforcing filler to design electrospun polyvinyl alcohol (PVA)/chitosan based polymeric nanofibrous scaffold for drug delivery. The characterization results of FTIR (Fourier Transform Infrared Spectroscopy) confirm the successful chemical modification of nanocellulose (NCC). SEM (Scanning Electron Microscopy) results indicate the morphological modifications in ANC due to grafting. ANC enhances the mechanical properties of scaffold and sustains the release of the loaded drug to 67.89±3.39% as compared to the pure PVA/chitosan scaffold of 92.63±4.63% over a period of 72 h as shown by the results of in-vitro drug release study. Moreover, the incorporation of 0.5 % ANC improves the anti-bacterial activity against both gram-positive (97.4±4.87%, reduction in viable cells count) and gram-negative bacteria (98.5±4.93%, reduction in viable cells count). Further, the skin irritation and MTT assay authenticate the biocompatibility of the developed scaffold. The overall findings hence prove the efficacy of the engineered scaffold as a potential transdermal patch for sustained drug delivery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.