In this study, octadecylamine modified MMT (C18-MMT) filled SBR nanocomposites were manufactured using a latex method and a compounding method. Cure characteristics and mechanical properties of SBR compounds filled with C18-MMT, Cloisite 15A, carbon black and Na-MMT were also evaluated. By using the latex method, the number of layers of the silicates in the SBR matrix reduced from the original 14–15 layers to 1–4 layers. This was due to the presence of octadecyl ammonium ions which reduced the number of layers of the re-aggregated silicates during the process of co-coagulation. The SBR/C18-MMT nanocomposites using the latex method showed the highest oscillating disc rheometer (ODR) torques, tensile strength, modulus and tear energy. These increased mechanical properties can be attributed to the excellent reinforcing effect of the silicates well dispersed in the rubber matrix rather than the effect of the increase in the degree of crosslinking. Without alkyl ammonium ions in the latex method, the level of dispersion of silicates in the SBR matrix was very poor. The SBR/C18-MMT nanocomposites using the compounding method were found to have a lower degree of modulus, tensile strength and tear energy due to the low level of the dispersion of silicates than the SBR/C18-MMT nanocomposites using the latex method.
Read full abstract