Several sawfly species (Hymenoptera: Symphyta) possess larval stages with oesophageal diverticula in which plant compounds are sequestered and used for defence against predators. These organs are present in the larvae of Susana (Tenthredinidae) but remain poorly studied. Here, the aim was to analyse the diverticula extract of Susana cupressi by gas chromatography-mass spectrometry to better understand the ecology of this species. The foliage of the hostplant (Cupressus sempervirens), as well as the larval foregut, midgut, and haemolymph were also analysed. Complementary data were gathered by morphological observations, bioassays using ants, and genetic analyses to identify the studied Susana species. Altogether, 48 terpenes were identified, 30 being sesquiterpenes. The terpenes were generally detected in the foliage, but also in the diverticula, foregut, and midgut, whereas none of them in the haemolymph. The main compounds were alpha-cedrene, alpha-fenchene, alpha-pinene, alpha-terpinyl acetate, beta-myrcene, beta-pinene, cedrol, delta 3-carene, epi-bicyclosesquiphellandrene, germacrene D, limonene, sabinene, and terpinolene. The chemical profiles of these 13 compounds were significantly correlated between foliage-diverticula, diverticula-foregut and foregut-midgut, but not correlated for the three remaining possible comparisons. Alpha-pinene decreased and germacrene D increased from the foliage to the diverticula, which may reflect a specific sequestration of the latter terpene and its known deleterious effects on insects. We conclude that larvae of S. cupressi, similarly to those of diprionids, are well defended against predatory attacks by sequestering and regurgitating hostplant terpenes, including germacrene D.
Read full abstract