Galanin-like peptide (GALP) is a newly identified neuropeptide implicated in the regulation of metabolism and reproduction. GALP gene expression is decreased in the hypothalamus of genetically obese rodents, such as fa/fa rats and ob/ob mice, and central administration of GALP increases feeding in satiated rats. The effect of dietary obesity on GALP-induced feeding is unknown, so this study characterized the effects of central administration of GALP on feeding in a rat model of diet-induced obesity. Male Sprague-Dawley rats (n = 21) were randomly assigned to receive standard laboratory chow (12% fat as kcal) or high-fat cafeteria diet (35% fat) for 12 weeks before intracerebroventricular (icv) cannulae were implanted. Seven days later, rats received 0,0.2 or 0.3 nmol doses of GALP in randomized order at least 48 h apart. Food intake was measured at 0.5,1,2, 4 and 24 h post administration and body weight was measured at 24 h. Rats were maintained on their respective diets throughout the entire feeding experiment. Implementation of the high-fat diet led to significantly greater caloric intake (230%) and body weight (28%) compared to chow-fed control rats. GALP-induced feeding was rapid and maximal in both dietary groups at 30 min post injection. The 0.3 nmol dose of GALP led to significantly larger increases in caloric intake in high-fat fed rats than in chow-fed controls (35.4 +/- 3.7 and 22.1 +/- 1.3 kcal, respectively, at 30 min). It is not known if diet-induced obesity alters endogenous GALP levels, but our data suggest that adaptive responses in GALP signaling might occur during chronic overfeeding. One possible explanation is an increased sensitivity and/or number of specific GALP receptors, although actions of exogenous GALP may also represent pharmacological actions at galanin receptors.