Abstract
The hypothalamic neuropeptide melanin-concentrating hormone (MCH) increases feeding when injected intracerebroventricularly in rats. To identify the hypothalamic nuclei responsible for the orexigenic effect, we injected the peptide into discrete hypothalamic nuclei known to express the MCH receptor, MCH1R. MCH (0.6 nmol) elicited a rapid and significant increase in feeding in satiated rats following injection into the arcuate nucleus (0-1 h: 421 +/- 60%; P < 0.01). An elevation in feeding was also observed following injection into the paraventricular nucleus, which was sustained up to 4 h post injection (0-4 h: 218 +/- 29%; P < 0.01). A significant increase in feeding during this time period was also observed following injection into the dorsomedial nucleus (0-4 h: 155 +/- 12%; P < 0.05). No significant alteration in feeding was observed following injection into the supraoptic nucleus, lateral hypothalamic area, medial preoptic area, anterior hypothalamic area, or ventromedial nucleus of the hypothalamus. To identify the neurotransmitters that may be potentially involved in this effect, we examined their release from hypothalamic explants in vitro following exogenous MCH administration. MCH (1 micro M) increased the release of the orexigenic neurotransmitters neuropeptide Y (37.8 +/- 6.0 fmol/explant vs. basal 30.2 +/- 4.3 fmol/explant; P < 0.05) and agouti-related peptide (4.1 +/- 0.6 fmol/explant vs. basal 2.4 +/- 0.2 fmol/explant; P < 0.05) and decreased the release of the anorectic neurotransmitters alpha-MSH (41.7 +/- 6.8 fmol/explant vs. basal 65.9 +/- 11.0 fmol/explant; P < 0.01) and cocaine- and amphetamine-regulated transcript (112.3 +/- 12.4 fmol/explant vs. basal 167.4 +/- 13.0 fmol/explant; P < 0.001). These studies suggest that the orexigenic effect of MCH may be mediated via activation or inhibition of these feeding circuits within the arcuate nucleus and paraventricular nucleus of the hypothalamus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.