Combining multiple devices for localization has important applications in the military field. This paper exploits the land-based short-wave platforms and satellites for fusion localization. The ionospheric reflection height error and satellite position errors have a great impact on the short-wave localization and satellite localization accuracy, respectively. In this paper, an iterative constrained weighted least squares (ICWLS) algorithm is proposed for these two kinds of errors. The algorithm converts the nonconvex equation constraints to linear constraints using the results of the previous iteration, thus ensuring convergence to the globally optimal solution. Simulation results show that the localization accuracy of the algorithm can reach the corresponding Constrained Cramér-Rao Lower Bound (CCRLB). Finally, the localization results of the two methods are fused using Kalman filtering. Simulations show that the fused localization accuracy is improved compared to the single-means localization.
Read full abstract