Coherent free-space optical communication offers significant advantages in terms of communication capacity, making it particularly suitable for high-speed inter-satellite transmission within satellite communication networks. Nonetheless, the presence of Doppler frequency offset (FO) and phase noise (PN) associated with lasers adversely affects the bit error rate (BER) performance of these communication systems. Conventional methods for FO and phase estimation are usually hindered by high computational demands and phase cycle slips, especially in environments characterized by elevated channel noise. To address these challenges, a noise-tolerant method is proposed to facilitate accurate carrier phase recovery (CPR) with reduced complexity. This method merges a second-order feedback loop and a feedforward stage to achieve accurate estimation. The simulation results indicate that the proposed method surpasses traditional methods in terms of noise tolerance and resource efficiency. Particularly, the BER of the proposed method can be decreased to 6.7×10−3 at a signal-to-noise ratio (SNR) of 4.5 dB, in contrast to a BER of 0.25 for the traditional method. Additionally, the resource consumption of the proposed method can be decreased by 64% under equivalent conditions. Furthermore, the experimental results reveal that the phase estimation error and BER for the proposed method are 2.1×10−4 and 7.5×10−4, respectively, when the received power is −41 dBm. These values are significantly lower than those achieved with traditional methods, which obtain errors of 1.85×10−3 and a BER of 0.48, respectively.
Read full abstract