o-Phthalaldehyde (OPA) is a bifunctional reagent that forms an isoindole derivative by reacting with cysteine and lysine residues separated by approximately 0.3 nm. OPA inhibits sarcoplasmic reticulum (SR) Ca2+-ATPase activity at low micromolar concentrations and induces Ca2+ release from actively loaded SR vesicles by activating the ryanodine receptor from fast twitch skeletal muscle. Both ryanodine binding and single-channel activity show a biphasic concentration dependence. At low OPA concentrations (<100 μM), ryanodine binding and single channel activity are stimulated, while at higher concentrations, a time-dependent sequential activation and inhibition of receptor binding is observed. Activation is characterized by a Ca2+-independent increase in maximal receptor occupancy. Data are presented to support a model in which Ca2+ channel and ryanodine binding activity are enhanced due to an intramolecular cross-linking of nearby lysine and nonhyperreactive cysteine residues. OPA complexation with endogenous lysine residue(s) is critical for receptor activation.